Solutions for the file of Examples 2. pdf

1. The weight of a sophisticated running shoe is normally distributed with a mean of 340g and a variance of 200 g^2 .

a) What is the probability that a shoe weighs more than 370g?

$$\mu = 340g$$

$$\sigma^{2} = 200 g^{2}$$

$$P(x > 370) = ?$$

$$P(x > 370) = 1 - \phi(z) = ?$$

$$z = \frac{x - \mu}{\sigma} = \frac{370 - 340}{\sqrt{200}} = 2.12$$

According to the z table the probability by 2.12 is 0.982997.
So:

$$\phi(z) = 0.982997$$

$$P(x > 370) = 1 - 0.982997 = 0.0169$$

Thus, 0.0169 is the probability that a shoe weighs more than 370g.

b) What must the standard deviation of weight be in order for the company to state that 99.9% of its shoes are less than 370g?

$$\mu = 340g$$

 $P(x < 370) = 0.999$
 $\sigma^2 = ?$
 $\phi(z) = 0.999$

According to the z table the z value by 0.999 probability is 3.09.

$$z = \frac{x - \mu}{\sigma} \to 3.09 = \frac{370 - 340}{\sigma} \to \sigma = 9.71 \to \sigma^2 = 94.28 \ g^2$$

c) If the variance remains at 200 g^2 , what must the mean weight be in order for the company to state that 99.9% of its shoes are less than 370g?

$$\sigma^2 = 200 g^2$$

 $\mu = ?$
 $P(x < 370) = 0.999$
 $\phi(z) = 0.999$

According to the z table the z value by 0.999 probability is 3.09.

$$3.09 = \frac{370 - \mu}{\sqrt{200}} \to \mu = 326.4 g$$

2. The diameter of the dot produced by a printer is normally distributed with a mean diameter of 0.05 mm and a variance of 10^{-4} mm².

a) What is the probability that the diameter of a dot exceeds 0.065 mm?

$$\mu = 0.05 mm$$

$$\sigma^{2} = 10^{-4} mm^{2}$$

$$P(x > 0.065) = ?$$

$$P(x > 0.065) = 1 - \phi(z) = ?$$

$$z = \frac{x - \mu}{\sigma} = \frac{0.065 - 0.05}{\sqrt{10^{-4}}} = 1.50$$

According to the z table the probability by 1.50 is 0.933193.
So:

$$\phi(z) = 0.933193$$

$$P(x > 0.065) = 1 - 0.933193 = 0.0668$$

Thus, 0.0668 is the probability that the diameter of a dot exceeds 0.065 mm.

b) What is the probability that a diameter is between 0.04 and 0.065 mm?

$$\begin{split} \mu &= 0.05 \ mm \\ \sigma^2 &= 10^{-4} \ mm^2 \end{split}$$

$$\begin{split} P(0.04 &< x \leq 0.065) = P(x \leq 0.065) - P(0.04 < x) =? \\ P(0.04 < x) =? \\ P(x \leq 0.065) =? \\ z &= \frac{x - \mu}{\sigma} \rightarrow \frac{0.04 - 0.05}{\sqrt{10^{-4}}} = -1.00 \end{split}$$
According to the z table the probability by -1.00 is 0.137857.
$$\begin{split} P(0.04 < x) &= 0.137857 \\ z &= \frac{x - \mu}{\sigma} \rightarrow \frac{0.065 - 0.05}{\sqrt{10^{-4}}} = 1.5 \\ \text{According to the z table the probability by 1.5 is 0.933193.} \\ P(x \leq 0.065) &= 0.933193 \\ P(x \leq 0.065) - P(0.04 < x) &= 0.933193 - 0.137857 = 0.795 \end{split}$$

c) In what interval will be the diameter with 99% probability?

$$\mu = 0.05 mm$$

$$\sigma^{2} = 10^{-4} mm^{2}$$

$$P(x_{a} < x \le x_{f}) = 0.99$$

$$z = \frac{x - \mu}{\sigma} \rightarrow x_{a} = \mu - z_{\alpha}\sigma ; \quad x_{f} = \mu + z_{\alpha}\sigma$$

$$P\left(\mu - z_{\alpha}\sigma < x \le \mu + z_{\alpha/2}\sigma\right) = 0.99$$

According to the z table the z value (by 0.995 probability) is 2.58.

$$P\left(0.05 - 2.58 \cdot \sqrt{10^{-4}} < x \le 0.05 + 2.58 \cdot \sqrt{10^{-4}}\right) = 0.99$$
$$P(0.0242 < x \le 0.0758) = 0.99$$

3. A manufacturer produces piston rings for an automobile engine. It is known that ring diameter is normally distributed with a standard deviation of 0.001 millimetres. A random sample of 15 rings has a mean diameter of 74.036 millimetres.

a) Construct a 99% two-sided confidence interval on the mean piston ring diameter.

$$\sigma = 0.001 mm$$

$$n = 15$$

$$\bar{x} = 74.036 mm$$

$$P(\mu_L < \mu < \mu_U) = 0.99$$

$$z = \frac{\bar{x} - \mu}{\frac{\sigma}{\sqrt{n}}} \rightarrow \mu_L = \bar{x} - z_{\frac{\sigma}{2}} \frac{\sigma}{\sqrt{n}} ; \quad \mu_U = \bar{x} + z_{\frac{\sigma}{2}} \frac{\sigma}{\sqrt{n}}$$

$$P\left(\bar{x} - z_{\frac{\sigma}{2}} \frac{\sigma}{\sqrt{n}} < \mu < \bar{x} + z_{\frac{\sigma}{2}} \frac{\sigma}{\sqrt{n}}\right) = 0.99$$

According to the z table the z value by 0.995 probability is 2.58.

$$P\left(74.036 - 2.58 \cdot \frac{0.001}{\sqrt{15}} < \mu < 74.036 + 2.58 \cdot \frac{0.001}{\sqrt{15}}\right) = 0.99$$

 $P(74.0353 < \mu < 74.0367) = 0.99$

b) Construct a 99% lower-confidence bound on the mean piston ring diameter. Compare the lower bound of this confidence interval with the one in part (a).

$$\sigma = 0.001 mm$$

$$n = 15$$

$$\bar{x} = 74.036 mm$$

$$P(\mu_a < \mu) = 0.99$$

$$z = \frac{\bar{x} - \mu}{\frac{\sigma}{\sqrt{n}}} \rightarrow \mu_a = \bar{x} - z_{\frac{\sigma}{2}} \frac{\sigma}{\sqrt{n}}$$

$$P\left(\bar{x} - z_{\frac{\sigma}{2}} \frac{\sigma}{\sqrt{n}} < \mu\right) = 0.99$$
According to the z table the z value by 0.99 probability is 2.32.

$$P\left(74.036 - 2.32\frac{0.001}{\sqrt{15}} < \mu\right) = 0.99$$
$$P(74.035 < \mu) = 0.99$$

4. The sugar content of the syrup in canned peaches is normally distributed. A random sample of n=10 cans yields a sample standard deviation of s=1.8 milligrams and sample mean 32.4 g.

a) Calculate a 90% upper confidence limit for expected value of the sugar content.

The unit of the sample mean is incorrect in the text of the example. I will use mg as unit during the solution of the example.

$$n = 10 \rightarrow v = 10 - 1 = 9$$

$$s = 1.8 mg$$

$$\bar{x} = 32.4 mg$$

$$P(\mu \le \mu_U) = 0.90$$

$$t = \frac{\bar{x} - \mu}{\frac{s}{\sqrt{n}}} \rightarrow \mu_U = \bar{x} + t_\alpha \frac{s}{\sqrt{n}}$$

$$P\left(\mu \le \bar{x} + t_\alpha \frac{s}{\sqrt{n}}\right) = 0.90$$

According to the t table the t value by 0.90 probability and by v = 9 (one-sided) is 1.383.

$$P\left(\mu \le 32.4 + 1.383 \frac{1.8}{\sqrt{10}}\right) = 0.90$$
$$P(\mu \le 33.187) = 0.90$$

b) Calculate a 90% upper confidence limit for the variance of the sugar content.

$$n = 10$$

$$s = 1.8 mg$$

$$P(\sigma^2 \le \sigma_U^2) = 0.90$$

$$s^2 = \frac{\chi^2 \sigma^2}{\nu} \to \sigma^2 = \frac{s^2 \nu}{\chi^2} \to \sigma_U^2 = \frac{s^2 \nu}{\chi_L^2}$$

$$P\left(\sigma^2 \le \frac{s^2 \nu}{\chi_L^2}\right) = 0.90$$

According to the χ^2 table the χ^2_L value by 0.90 probability and by $\nu = 9$ is 4.17.

$$P\left(\sigma^2 \le \frac{1.8^2 \cdot 9}{4.17}\right) = 0.90$$

 $P(\sigma^2 \leq 7.0) = 0.90$