Solutions for the file of Examples 2. pdf

1. The weight of a sophisticated running shoe is normally distributed with a mean of 340 g and a variance of $200 \mathrm{~g}^{2}$.
a) What is the probability that a shoe weighs more than 370 g ?

$$
\begin{aligned}
& \mu=340 g \\
& \sigma^{2}=200 g^{2} \\
& P(x>370)=? \\
& P(x>370)=1-\phi(z)=? \\
& z=\frac{x-\mu}{\sigma}=\frac{370-340}{\sqrt{200}}=2.12
\end{aligned}
$$

According to the z table the probability by 2.12 is 0.982997 .
So:
$\phi(z)=0.982997$
$P(x>370)=1-0.982997=\mathbf{0 . 0 1 6 9}$

Thus, 0.0169 is the probability that a shoe weighs more than 370 g .
b) What must the standard deviation of weight be in order for the company to state that 99.9% of its shoes are less than 370 g ?

$$
\begin{aligned}
& \mu=340 g \\
& P(x<370)=0.999 \\
& \sigma^{2}=? \\
& \phi(z)=0.999
\end{aligned}
$$

According to the z table the z value by 0.999 probability is 3.09 .

$$
z=\frac{x-\mu}{\sigma} \rightarrow 3.09=\frac{370-340}{\sigma} \rightarrow \sigma=9.71 \rightarrow \boldsymbol{\sigma}^{2}=\mathbf{9 4 . 2 8} \boldsymbol{g}^{2}
$$

c) If the variance remains at $200 g^{2}$, what must the mean weight be in order for the company to state that 99.9% of its shoes are less than 370 g ?

$$
\begin{aligned}
& \sigma^{2}=200 g^{2} \\
& \mu=? \\
& P(x<370)=0.999 \\
& \phi(z)=0.999
\end{aligned}
$$

According to the z table the z value by 0.999 probability is 3.09 .

$$
3.09=\frac{370-\mu}{\sqrt{200}} \rightarrow \boldsymbol{\mu}=326.4 \boldsymbol{g}
$$

2. The diameter of the dot produced by a printer is normally distributed with a mean diameter of 0.05 mm and a variance of $10^{-4} \mathrm{~mm}^{2}$.
a) What is the probability that the diameter of a dot exceeds 0.065 mm ?

$$
\begin{aligned}
& \mu=0.05 \mathrm{~mm}^{2} \\
& \sigma^{2}=10^{-4} \mathrm{~mm}^{2} \\
& P(x>0.065)=? \\
& P(x>0.065)=1-\phi(z)=? \\
& z=\frac{x-\mu}{\sigma}=\frac{0.065-0.05}{\sqrt{10^{-4}}}=1.50
\end{aligned}
$$

According to the z table the probability by 1.50 is 0.933193 .
So:

$$
\begin{aligned}
& \phi(z)=0.933193 \\
& P(x>0.065)=1-0.933193=\mathbf{0 . 0 6 6 8}
\end{aligned}
$$

Thus, 0.0668 is the probability that the diameter of a dot exceeds 0.065 mm .
b) What is the probability that a diameter is between 0.04 and 0.065 mm ?

$$
\begin{aligned}
& \mu=0.05 \mathrm{~mm} \\
& \sigma^{2}=10^{-4} \mathrm{~mm}^{2} \\
& P(0.04<x \leq 0.065)=P(x \leq 0.065)-P(0.04<x)=? \\
& P(0.04<x)=? \\
& P(x \leq 0.065)=? \\
& z=\frac{x-\mu}{\sigma} \rightarrow \frac{0.04-0.05}{\sqrt{10^{-4}}}=-1.00
\end{aligned}
$$

According to the z table the probability by -1.00 is 0.137857 .
$P(0.04<x)=0.137857$
$z=\frac{x-\mu}{\sigma} \rightarrow \frac{0.065-0.05}{\sqrt{10^{-4}}}=1.5$
According to the z table the probability by 1.5 is 0.933193 .
$P(x \leq 0.065)=0.933193$
$P(x \leq 0.065)-P(0.04<x)=0.933193-0.137857=\mathbf{0 . 7 9 5}$
c) In what interval will be the diameter with 99% probability?

$$
\begin{aligned}
& \mu=0.05 \mathrm{~mm} \\
& \sigma^{2}=10^{-4} \mathrm{~mm}^{2} \\
& P\left(x_{a}<x \leq x_{f}\right)=0.99 \\
& z=\frac{x-\mu}{\sigma} \rightarrow x_{a}=\mu-z_{\frac{\alpha}{2}} \sigma ; x_{f}=\mu+z_{\frac{\alpha}{2}} \sigma \\
& P\left(\mu-z_{\frac{\alpha}{2}} \sigma<x \leq \mu+z_{\alpha / 2} \sigma\right)=0.99
\end{aligned}
$$

According to the z table the z value (by 0.995 probability) is 2.58 .

$$
\begin{aligned}
& P\left(0.05-2.58 \cdot \sqrt{10^{-4}}<x \leq 0.05+2.58 \cdot \sqrt{10^{-4}}\right)=0.99 \\
& \boldsymbol{P}(\mathbf{0 . 0 2 4 2}<\boldsymbol{x} \leq \mathbf{0 . 0 7 5 8})=\mathbf{0 . 9 9}
\end{aligned}
$$

3. A manufacturer produces piston rings for an automobile engine. It is known that ring diameter is normally distributed with a standard deviation of 0.001 millimetres. A random sample of 15 rings has a mean diameter of 74.036 millimetres.
a) Construct a 99% two-sided confidence interval on the mean piston ring diameter.

$$
\begin{aligned}
& \sigma=0.001 \mathrm{~mm} \\
& n=15 \\
& \bar{x}=74.036 \mathrm{~mm} \\
& P\left(\mu_{L}<\mu<\mu_{U}\right)=0.99 \\
& Z=\frac{\bar{x}-\mu}{\frac{\sigma}{\sqrt{n}}} \rightarrow \mu_{L}=\bar{x}-Z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}} ; \mu_{U}=\bar{x}+Z_{\overline{2}} \frac{\sigma}{\sqrt{n}} \\
& P\left(\bar{x}-Z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}<\mu<\bar{x}+Z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}\right)=0.99
\end{aligned}
$$

According to the z table the z value by 0.995 probability is 2.58 .
$P\left(74.036-2.58 \cdot \frac{0.001}{\sqrt{15}}<\mu<74.036+2.58 \cdot \frac{0.001}{\sqrt{15}}\right)=0.99$
$P(74.0353<\boldsymbol{\mu}<\mathbf{7 4 . 0 3 6 7})=0.99$
b) Construct a 99% lower-confidence bound on the mean piston ring diameter. Compare the lower bound of this confidence interval with the one in part (a).

$$
\begin{aligned}
& \sigma=0.001 \mathrm{~mm} \\
& n=15 \\
& \bar{x}=74.036 \mathrm{~mm} \\
& P\left(\mu_{a}<\mu\right)=0.99 \\
& z=\frac{\bar{x}-\mu}{\frac{\sigma}{\sqrt{n}}} \rightarrow \mu_{a}=\bar{x}-z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}} \\
& P\left(\bar{x}-Z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}<\mu\right)=0.99
\end{aligned}
$$

According to the z table the z value by 0.99 probability is 2.32 .

$$
\begin{aligned}
& P\left(74.036-2.32 \frac{0.001}{\sqrt{15}}<\mu\right)=0.99 \\
& \boldsymbol{P}(\mathbf{7 4 . 0 3 5}<\boldsymbol{\mu})=\mathbf{0 . 9 9}
\end{aligned}
$$

4. The sugar content of the syrup in canned peaches is normally distributed. A random sample of $n=10$ cans yields a sample standard deviation of $s=1.8$ milligrams and sample mean 32.4 g .
a) Calculate a 90% upper confidence limit for expected value of the sugar content.

The unit of the sample mean is incorrect in the text of the example. I will use mg as unit during the solution of the example.
$n=10 \rightarrow v=10-1=9$
$s=1.8 \mathrm{mg}$
$\bar{x}=32.4 \mathrm{mg}$
$P\left(\mu \leq \mu_{U}\right)=0.90$
$t=\frac{\bar{x}-\mu}{\frac{s}{\sqrt{n}}} \rightarrow \mu_{U}=\bar{x}+t_{\alpha} \frac{s}{\sqrt{n}}$
$P\left(\mu \leq \bar{x}+t_{\alpha} \frac{s}{\sqrt{n}}\right)=0.90$
According to the t table the t value by 0.90 probability and by $v=9$ (one-sided) is 1.383 .

$$
\begin{aligned}
& P\left(\mu \leq 32.4+1.383 \frac{1.8}{\sqrt{10}}\right)=0.90 \\
& \boldsymbol{P}(\boldsymbol{\mu} \leq \mathbf{3 3 . 1 8 7})=\mathbf{0 . 9 0}
\end{aligned}
$$

b) Calculate a 90% upper confidence limit for the variance of the sugar content.
$n=10$
$s=1.8 \mathrm{mg}$
$P\left(\sigma^{2} \leq \sigma_{U}^{2}\right)=0.90$
$s^{2}=\frac{\chi^{2} \sigma^{2}}{v} \rightarrow \sigma^{2}=\frac{s^{2} v}{\chi^{2}} \rightarrow \sigma_{U}^{2}=\frac{s^{2} v}{\chi_{L}^{2}}$
$P\left(\sigma^{2} \leq \frac{s^{2} v}{\chi_{L}^{2}}\right)=0.90$
According to the χ^{2} table the χ_{L}^{2} value by 0.90 probability and by $v=9$ is 4.17 .
$P\left(\sigma^{2} \leq \frac{1.8^{2} \cdot 9}{4.17}\right)=0.90$
$P\left(\sigma^{2} \leq 7.0\right)=0.90$

